Graphene-based materials for flexible energy storage devices
نویسندگان
چکیده
منابع مشابه
Fabrication of Graphene/MoS2 Nanocomposite for Flexible Energy Storage
In the present work,MoS2 decorated graphene nanocomposite powders were synthesized by laser scribing method.Theobtainedflexible light-scribed graphene/MoS2composites are very suitableas micro-supercapacitors and thus their performance was evaluated at different concentrations.The effect of laser scribing process to reducegraphene oxide (GO) was investigated. The GO/MoS2composite wassynthesized ...
متن کامل3D Printed Graphene Based Energy Storage Devices
3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no f...
متن کاملFunctionalized carbon nanotubes and graphene-based materials for energy storage.
Carbon nanotubes (CNTs) or graphene-based nanomaterials functionalized by different strategies have attracted great attention for energy storage due to their large specific surface area, high conductivity, and good mechanical properties. This feature article presents an overview of the recent progress in the functionalization of CNTs and graphene-based materials for energy storage applications ...
متن کاملPaper‐Based Electrodes for Flexible Energy Storage Devices
Paper-based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li-ion batteries, Li-S batteries, Li-oxygen batteries. This review summarizes recent advances in the synthesis of paper-based electrodes, including paper-supported electrodes and paper-like electrodes. Their structural features, electrochemical performances...
متن کاملGraphene based flexible electrochromic devices
Graphene emerges as a viable material for optoelectronics because of its broad optical response and gate-tunable properties. For practical applications, however, single layer graphene has performance limits due to its small optical absorption defined by fundamental constants. Here, we demonstrated a new class of flexible electrochromic devices using multilayer graphene (MLG) which simultaneousl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Energy Chemistry
سال: 2018
ISSN: 2095-4956
DOI: 10.1016/j.jechem.2017.08.015